
,
*.’

J ...

NATIONALADVISORYCOMMITTEE
FOR AERONAUTICS

TECHNICAL MEMORANDUM 1335

MOTION OF A CYLINDER UNDER THE SURFACE OF A HEAVY “FLUID

By L. N. Sretensky

Translation

‘‘Dvizhenie tsilindra pod poverkhnostyu tyazheloi zhidkosti.”

CAHI Rep. No. 346, 1938.

,,..

Washington

August 1953

,. . -!:.y——



.

NATIONAL

lllllllllllM1’iBMIMIIllllllllllllll
31176014404603

2

ADVISORY COMMITI’EE FOR

r

AERONAUTICS

TECHNICAL MEMORANDUM 1335

! MOTION OF A CYLINDER UNDER ‘lTJ3SURFACE OF A HEAVY FLUID*

By L. N. Sretensky

1. INTRODUCTION

The present work on the theory of the motion of a solid body in a
fluid having a free surface consists of two parts.

In the first part (sections 2 to 8), general equations are given
for the determination of the flow of a heavy fluid of infinite depth
about a submerged circular cylinder. The problem of the motion of a
cylinder under the surface of a heavy fluid presents considerable dif-
ficulties in its solution. These difficulties were first pointed out
by Kelvin. A solution is given herein for the simplest part of the
problem of Kelvin, namely, setting up the equations of the problem and
obtaining certain approximations of their solution. The approximate
solution obtained replaces the moving circular cylinder by a certain
vortex.

T. H. Havelock (reference 1) in a recent paper considers the prob-
lem of Kelvin under the same general assumptions as are herein con-
sidered, but gives a more advanced approximate solution.

In the second part of the paper (sections 9 and 10), the cylinder
is replaced by a dipole of a certain strength, and an equation is set
up for the computation of the wave resistance of a circular cylinder
moving in a fluid of finite depth.

2. DERIVATION OF BOUNDARY CONDITIONS OF PROBLEM

In order to study the problem of the motion of a cylinder under the
surface of a fluid, a system of Cartesian coordinates XOY is intro-
duced. The OX-axis is placed along the undisturbed surface of the
liquid with its positive direction coinciding with the velocity c of
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2 NACA TM 1335

the flow at infinity, and the OY-axis is taken vertically upward. The

radius of the cylinder is denoted by a; and the ordinate of its center
by h. The origin of the XOY system is chosen directly above the
center of the cross section of the cylinder.

The fluid moves with the velocity potential @ and the stream
function ~. The disturbance (due to the presence of the cylinder) of
the horizontal projection of the fundamental flow velocity c is
denoted by u; the disturbance of the vertical projection, by v. If
c is the horizontal velocity of the flow at infinity, the following
expression can be obtained for the projection of the total velocity v
of the particles of the fluid:

u + C,v (1)

The equation of Bernoulli can now be written, if the motion is assumed
to be steady:

Pc 12—.
6 -~Y-~~ (2)

where b is the mass density of the fluid.

Along the free surface the pressure has the constant value PO.

Equation (2) is applied to the particles of the free surface lying fsr
ahead of the cylinder, that is, to those for which x . - ~. For
x=- ~, V = c and y = O; therefore,

Po
—= -:C2
5C2

Equation (2) can then be written

But

hence

The increments

P-PO
—=-gY - $ (VZC2)
6

V2 = (U+C)2 + V2

P-Po
—. -
6 [gY-; U2+V2

J
+ 2CU (3)

u and v are now assumed to be so small that their
squares may be neglected. With this assumption, the accurate equa-

tion (3) bec~mes the approximate equation

P-PO
—=-~Y6

- Cu
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When this equation is applied to the free surface,

Y=.:u
(4).

This equation can be used to determine the shape of the disturbed sur-
face of the fluid.

The fact that the velocity of the particles moving along the surface
is directed along the tangent to the surface is now taken into
consideration:

dy V—. —
dx U+c

This relation may be represented in the form

[
dy V ~ U U2—..

1dx c -F+~- “ “ -

If the terms of the second and higher order smallness are rejected,

dy V—..
dxc (5)

Eliminating the ordinate y by combining equations (4) and (5) yields

(6)

By introducing the potential Q.(x,y) and the stream function ~(x,y)
of the disturbed velocities, this condition may be given another form:

(7)

The functions Q and ~
tuting expressions (7) in

A second simplification
that y be replaced by

are harmonic conjugate functions. Substi-
condition (6) yields

(8)

of the problem is now introduced by requiring
zero. Equation (8) will then be satisfied
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along the axis of abscissas. Integrating

3$=+
~ ~z

where the constant of integration is zero
the zero value of the stresm function Y
and moreover, for x. --? u = - h$/ay =

NACA TM 1335

along this sxis gives

(9)

from the consideration that
was ascribed to the surface,
u.

Condition (9) is the first boundary condition of the problem. The
conditions on the surface of the cylinder will now be discussed. Let
the cylinder be washed by the streamline y = u. Since the relation
between Y and v is given by

the condition

where U>o.

Y=- Cyi-+

Y= a on the cylinder will take the form

*=a+cy

The determination of the motion of
integration of the Laplace equation

for the following boundary conditions:

the fluid thus depends on the

o

aly
~~ for y=O—.

ay C2

V=m+Cy for X2 + (y+h)z = az

3. TRANSFORMATION OF FLOW REGION INTO CIRCULAR RING

(I)

(II)

In order to obtain the integral of the Laplace equation correspond-
ing to conditions (1) and (11), a conformal mapping of the complex var-
iable plane z = x+ iz on the plane ~ = ~+ iq is carried out by
setting
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1
,$

(1)

(2)

When the complex variable z is varied along the OX-s,xis from -~ to

+= the point ~ describes, starting from the point { = 1, the circle

~2 + 72 = 1 in the clockwise direction.

Ifz=- hi + aeyi is set next in formula (1) and the angle y
is varied from zero to 2x, the surface of the cylinder will correspond

to the circle &2 + ~2 = p2 of the plane of the complex variable <.
The radius p of this circle is determined in terms of a and h by
the formula

h- ~~Q=
a (3)

or

(3’)

The number p is evidently less than one; h>a.

The region occupied by the flow is thus transformed into the space

enclosed between the two concentric circles 1(1=1 and 1~1= p.

The numbers X and p introduced previously have simple geometri-
cal meanings: A is the length of the tangent drawn from the origin of
coordinates to the cylinder, and p is the tangent of the quarter
angle L? subtended by the cylinder at the origin.

From formula (1) z is determined:

(4)

and from this value are found the values of x and y in terms of the
argument w and the modulus r of the complex number {:

I



2ti sin ux=.
1 -2rcosm+r2

A(l-r2)y.
1 -2rcosu+r2
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(5)

rsin u.)=- 2Xx

X2 + (y+x)z (5’)

Xz+yz-hz
rcosm=

X2 + (Y+A)2

The transformation of boundary conditions (I)
follow .

Condition (II) will be considered first.
this condition may be written as

and (II) of the problem

Formula (5) shows that

[if] =cL+—
cA(l-p2) ~

r.p
1 - 2p Cos u

In transforming condition (I) it is noted
there follows for- y = O

dy=-l
hdr
- Cos m

+ p“

that from formula (5)

from which condition (I) assumes the following

where

Conditions (II’) and (I’) may be given another
complex stream function:

(II’)

form:

(1’)

form by introducing the

(6)
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The conditions then assume the following forms:

[ 1Imag. 2WW + (1-~)2~= O for ICI = 1 (I”)

Imag.(w-cz) = u for Igl =P (II”]

The function w is homomorphic at all points of the ring p< I{le 1,
but it will be assumed that the flow around the cylinder has a definite
circulation. The function w will therefore not be single-valued in
the ring under consideration.

In order to obtain the required function- w(~), the form of the fol-
lowing infinite series will be used:

2
a

w= q in ~ + PmEm (7)
m---

with the undetermined coefficients pm and q.

4. COMPUTATION OF COEFFICIENTS OF SERIES

REPRESENTING FUNCTION W(c)

First considered are the relations obtained when condition (11”)
is required to be satisfied by the function w(~}.

In the notation

(8)

the coefficients ~ and ~ are real numbers, and r is the circu-

lation of the flow about the cylinder.

Condition (II”) then easily transforms into

1-
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+(W
*lnp+

x
pm(Bm cos m +~sin m) - AcR(l+2~+2~2+ . . . ) = a

m=. m

from which the following relations are obtained:

&lnp+BO=k+u

B

Pm% +$= 2xcpm

1

m=l,2,3 . . .

A
PmAm-==o

Pm

Condition (I”) is now considered. When the following formulas are
used

2

m

[1Imag. 2WW = 2~Bo + 2V (~+B-m) cos ~ + (.&-A-m) sinu
m.1

lma’@-’)2# =-:+lmag~ (’‘i)+
+m

Imag .
~{

(m+l)Pm+l -
}

2mpm + (m-l)pm_l Lm
m=-~

no difficulty is encountered in representing the condition

[
Imag. 2UW+ (1-~)2 ~

1
=0

in the form of the following trigonometric series:

m

21JBo+ 2p
q{ )

(~+B-m) cos m + (~-A-m) sinxm -
m.

+.
r;+: Cos 0.)+ E ([(m+l)~+~ -

1
2% + (m-l)~-l cos Ur.JJ+

m=-=

[
(m+l)~+l -

J)

2% + (m-l)~-l sin mm = O

This equation gives a series of relations between the coefficients b
and ~:
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~-Bo. + r- 2PB0

W(~+B-l) = (R1-B-l) - (B2-B-2) --~

9

(11)

(12)

P(~+B_m) =

v(~-&m) =

d~-B-m) -~ (~+l-B.(m+l)] -

‘~ (~-1-.13-(m-l)) (m = 2,4,6...)

(13)

m(~+A-m) -~(~+l+A-(m+l)) -

~ (~-l+L(m-l)) (m = 1,2,3,4,5. . .)

(14)

The last of these recurrent relations will be discussed first. From
recurrent relation (10)

A-m = ~2mAm

as a result of which relation (14) may be written

~ (l+p2m-2
[)%-1 i P(l-P2m) - m(l+p2m )]%+

~ (l+pzm+z)~+l = o (m= 1,2,3. . .)

For briefness,

; (l+P2m)~= km

2p l-pzm
—. —-2=sm
m l+pm

I-
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With these notations the obtained relation can be rewritten in the
lowing form:

%ll+%km+%lld=o

(m=l,2,3, . . .)

The coefficient ~ is a certain finite number so that ~ = O.

1335

fol-

(16)

Relation (13) is now considered. Eliminating from this relation

the numbers B with negative indices and making use of relation (10)
yield

~ (lw2m-2

[ 1
)~-_L+lJ(l-p2m) -m(l+p2m) ~+

[ 1‘+(l+p2m+2)~+1=2Xcp2m ‘~ + ‘~ p2 - m - ~

For brevity,

is written to obtain for Xm the following relation:

f

2 m-1 + m+l
~m_l + sm~ +Xm+l = Zkcp — 1yp2-m-w

2p2 “

(m =2)3,4,5,. . .)

If

r
‘0’-%

(lT)

(18)

(19)

relation (18) for m = 1 gives condition (12).

The system of recurrent relations (16) and (18) is thus obtained
for the coefficients

Al) A29 A3, . . .

Bl, B2, B3, . . .

To these relations there must be added relations (9) and (11).
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5. INVESTIGATION

The relation

%-1

may be used to set up two
functions

11

OF RECURRENT R.EIJYCIONSBETWEEN

NUMBERS q

+sm~+~+l=(l

(m=l,2,3, ...)

functional relations between the two

of the complex variable !..

First of all

or

m

x km
F(c) = 2 — ~m

2m -iiim=l l+p

[h
00

% {~-l.d~F(c) = 2 —
Om=l l+p2m

The new function S(c) is introduced

from which
K

F(<) = 2
f+

s(g) .d
o

(16)

(20)

(21)

(22)

—
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The function S(c) is connected with the function u(~) by the fol.
lowing obvious relation:

s(g) + S(pzg) = u(~) (23)

Together with this relation there is still another obtained from the
following considerations. Replacing ~ on the right side of equa-
tion (20) by

- ‘m-l%-l - %1-2

yields

+ A

or

Transforming the infinite sum on the right side gives

m m

z z l-p2m-2 m-1

M=2 ‘m-l%n.lLm-l = 2p
c— - Zcr(g)M=z ~+p2m-2 _KM-1m-l

or .
w

The function under the integral may be expressed as follows in terms
of the functions u(~) and S(g):

(24)
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hence

Substituting in equation (24) the obtained value of the infinite sum
produces a new relation betwben the functions S(g) and cr(~):

Rewriting this relation in the differential form,

(25)

and adding to this differential equation the functional equation

s(~) +S(pz{) =0({) (23)

furnish the two necessary equations for the determination of the func-
tions u(c) and S(L). The function S(c) being determined from these
equations, the function F(c) may be obtained with the aid of rela-
tion (22) or the relation

The function

may be represented through the function F(c) as follows:

(22’)

— --
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,,, ,,

The complex stre- function (7) is represented thus:

w=w1+iw2

Setting

and

(26)

(28)

the function wl(~) may be constructed from the function F(~) by the
formula

or

In the variable z this function may be written

m

WI(Z) = ~ + I ~.(z-Ai)2m+p2m(z+Xi)2m
m=l (Zz+xz)m

The function wz must now be investigated.

(27’)

—— . .. .. . . . . . .. . ,,, ... .. . .. .,, ..,,. -,.- ... . .. . .. . .. .... .. ...
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OF RECURRENT RELATIONS BETWEEN NUMBERS Mm

obtained recurrent relation

‘ml + ‘m%
[ 1+Mm+l=2kcp2mm~+ ~p2-m-~
.@2

(29)
XO=* (m=l, 2,3,. . .)

the three functions of the complex variable ~ may be considered:

Between these
relations:

Equation (30)

functions there exist the following two easily obtained

(30)s’({) +s’(p%J =a’(~)

J

K

F’(!) = 2 s’({) .+ (31)
o

gives the first relation between the functions s’(c)
and a’(~); for obtaining the second relation, the recurrent relations
(29) are used as follows:

- w

IJl({)= -
‘Z

m

m=2 ‘m-l%-l< -
x xm_2Lm + Xlc + L(I)
m.2

. .

or
m

L(g) = 2XC

~[

2m m-1 ~
P

m=l
2P2

m+l
--Z- 1P2-m-vCm+l (32)
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Transforming this relation gives
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But

(by the computations of the preceding section). Hence

from which is obtained

The function L(L) may be represented in finite form:

whence

I d L(c) _ P2(l-P2)(&l) - P21J—— —_
2XC d! ~

(1-P2{)3 (1-P2{)2

Substituting this value of the derivative d L({)
~ ~ in equation (33)

yields

(34)

[

2~cp2 (1-P2)(K-1) -

(1-pz{)s 1(1-:2!)2
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This equation together with equation (30) may serve for the determina-
tion of the functions a’(~) and S’(!). The function S’(c) being

found, F’(c) may be computedby formula (31).

The function w2 of the preceding section may be written as follows:

Y %~m + Z ‘-m~-m (35)w2(~) = BO + &’in ~ + m=l
m=l

The second sum may be transformed into
m

I B-m~-m = - ~ ~&~+ 2~c 21 P2m~-m
m=1

or

w

x

2

()

2
B_m~-m= -F’ p —~ +;::;

m.1

Thus

or

(36)

(37)

In the variable z this expression may be written

wz(z)=~++ln~ +
2xcp2(z+M)

(1-p2)z-Xi(l+p2) +

(38)
m

E ~.(z-Xi)2m-p2m(z+Xi)2m
m=l (Zz+xz)m

—.—
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7. FORMULA FOR COMPLEX STREAM

On the basis of formulas (27’) and (36),
function w(~) may now be stated

or

w(g) =

The number

FUNCTION

the expression for the

21cp’17iln~+—w(L) = (~+iBO) + ~ i+

!.-P2

(~+iBo) +

~m is the

Equations (9) and

(39)

(11)
ficient Bo and the number

P

pm=~+i~

permit the determination of the coef-
a:

rB1-Z

Bo = l-zp.

(40)

B1-~
a= & in p +

1-2p. - ‘c

The number ~ remains arbitrary, end the circulation r likewise

remains arbitrary.

Formula (39’) may be given a more symmetrical form by introducing
in place of the coefficient pm new coefficients rm ad ~m by the
formulas

‘m = Pm - ikc

‘m = ~m + ikc

(41)



(39”)

I 8. APPROXIMATE SOLUTION OF PROBLEM OF DEEPLY SUBMERGED CYLINDER

The problem of determining the flow of a heavy fluid about a cir-
cular cylinder is thus reduced to the solution of the two systems of
the functional equations (23), (25), (30), and (34).

Since it is not possible to solve these equations without the aid
of infinite series or in a finite combination of elementary functions,
an approximate treatment of the equations of the problem is proposed.
For this purpose the number P2 must be considered. In the following
table are given various values of the ratio

P2

a/h
values of and P4.

a/h Q pz 4
P

0.500 60° 0.0718 0.005151
.423 500 .0492 .002416
.342 400 .0311 .000966
.259 300 .0173 .000300
.174 200 .0077 .000059
.087,100 .0019 .000004

and the corresponding

This table shows that for a ratio a/h less than 0.342 ~ 1/3, the
number p4 does not exceed 0.001, which justifies the rejection of all
powers of p2 starting with the second in considering the motion of
the stream for a/h < l/3. The results here obtained are in somewhat
complicated form; therefore only formulas which are suitable for the
condition at which it is permissible to reject the components with p2
are presented. The preceding table shows that this can be done by
stsrting, for example, with a/h < 1/3.

By rejecting the terms with pz equations (23) and (25) .ay be

rewritten as follows:

s(;) = 0({)
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from which
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The function F(c) is defined

from which

()
J? P2~=o

Equations (30) and (34) sre now considered. These, with the preceding
approximation, may be written as

s’(~) = u’(g)

from which

The function F’(~) is now obtained:

p~

()F, P;=O
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The complex stresm function may now be found. For this pqose for.
mula (39) is used to obtain

21

The constant B. may be determined by formula (40). Since ~ = 2X1

(by relation (17)),

2X1 - ;
B. =

1-2V

In order to determine the remaining const~ts kl ad xl the con-

dition of the absence of disturbance of the flow ahead of the cylinder
is used. The original variable z in formula (41) is used:

(

‘1

)

ri z-h + rriln z-xiw(~)=~+~+iBO-fi. — —-
z+~i 2fi z+Xi

Integrating by parts,

(

kl

)

kl+~li
w(~) =~+~+BOi - ‘~+r~ln~-

V

gz i

J

z gzi
-—

I’i C2 C2
~e e

— dz
xi z+~i

gz .-—
C2 ‘-

ewe +

But

,,,,,,,,,.,.,,,,,, ,,,,,,
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Hence

The condition at which the function Y becomes zero for y . 0 and
x=-a’ will be satisfied if the brackets sxe equated to zero:

and in addition the imaginary part of the parentheses is equated to zero:

%=$
The number Ao is arbitrary; the real part of the terms in the paren-
theses is also equated to zero to give

‘1&...T

In this way all the constants have been determined and the complex
stream function of the total flow may be written
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.13? ii

J’
z gzi

w= - Cz -&l” s&’ ‘2 ‘=2.-m ai-.dz (42)

Hence for the case here considered of the deep submersion of the cylinder,
the flow consists principally of the circulation of the velocity about
the cylinder. The sources of,different strengths entering the general
formula (39”) located at the point z = Ai begin to be effective only
at small.depths of submersion of the cylinder.

The vortex representing the cylinder is situated at the point
z = M., this point being somewhat displaced with reference to the
center of the cylinder.

Now formula (42) is applied to the computation of the pressure of
the stream on the cylinder.

Denoting by 5 the mass density of the fluid and by X and Y
the components of the resultant force yields, by the formula of
Chaplygin,

P

JY+iX=-$8 ~dW

The integrsl is taken over a closed contour surrounding the cylinder:

gz i

J
z gzi

(
-—

dW 1

)

C2 C2
-.LA. — + rg e—=

dz-c 2fiiz+ki + z-xi ~ e x ‘z-m

Substituting the preceding in the formula of Chaplygin and applying the
theory of residues yield

2gA

X _ @r2 e’z
C2

Y= ()-8rc- $+
(43)



24

The first formula determines
and the second, the lift force.

the wave resistance of

NACA TM 1335

the cylinder

For A=-- the second formula gives the theorem of Joukowski.

By formula (4), section 2, it is now possible to find the form of
the free surface of the fluid. The equation of the surface of the fluid
may be written in tem of the function W in the following form:

()dWy=~ReelZ+c
z=x+oi

Making use of formula (42),

or

l-cc

-7-y = Cos

Making x approach m gives

gx
-E

Zr c
y. Fe sin ~

c

Hence, far behind the cylinder the surface of the fluid carries steady
waves of length L = 2fic2/g.

The amplitude of these waves is



!!
.
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For determining the wave resistance, energy considerations are applied.
The wave resistance R is determined
steady wave by the formula

,’-

in terms of the energy E of the

●E

where U is the group velocity, and

-1
U=;c

The energy E is determined by the formula

AZ
E=+@

Making use of all these results formula (43) is again found:

9. MOTION OF CYLINDER UNDER SURFACE OF

FLUID OF FINITE DEPTH

Under consideration is a circular cylinder of radius R moving
with constant velocity c under the surface of a fluid of depth H.
The problem is proposed of finding its wave resistance as a function
of the submersion depth h of the center of the cylinder. This prob-
lem is solved under the assumptions of Lsmb; that is, the magnitude
h/R is assumed to be small and the entire cylinder is replaced by a

dipole of moment -2ficR2.

The motion of the fluid is studied in relation to a system of
axes of coordinates x and y displaced uniformly together with the
cylinder. The
By @(x,y) is
monic function

velocity of the approaching flow at infinity is c.
denoted the potential of the wave velocities. The har-
@(x,y) satisfies for y = - H the condition

(1)

.-
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Along the free boundary y = O the function *(X, y) satisfies the fol.
lowing condition:

a2* 2)+ gao—— =
—+p G+cG3yax2

(2)

The expression ~ >0 is the Rayleigh coefficient of the dissipating
forces.

Near the point y = - h, that is, near the
the function +(x,y) on the basis of the above
the following form:

n

+=-
CR6X

+...
x2+(y+h)2

Then

dJl=- CR2X

x2+(y+h)2

center of the cylinder,
considerations must have

(3)

and

(4)*2=+ CR2X

x2+(y-h)2
(

where ~z is the velocity potential of a certain fictitious dipole

situated at the point y = h.

In place of the function @ a new function 9(x~Y) iS introduced,
which is valid for the entire region occupied by the fluid, setting

The harmonic
the boundary

~.

function Q(x,y)
of the fluid:

~+@2+f$’ (5)

satisfies the following conditions on

aQ azl a+2
–-—-— fory=-H

~- ay ay
(1’)

b2q+W~+gb~ Zg a@2—— =-_ _ for y=O (2’)
2 ax C2 ay C2ay

.. ...— , , , - ,,...,—-—— ,,,,.- ..--..., m- ——--— ,,,,,.. ,m.—.--—— —
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TQe function Q(x,y) is obtained in the form of the following definite
integral:

a. r -- P“

J
(A cos kx + C sin kx) cosh ky & +

J

(B cos kx+D sin kx) sinh ky dk
o 0

(6)
where A, B, C, and D are unknown functions of the variable param-
eter k. To determine these functions condition (2’) is first considered:

[1 J

co

8+2 = 2 cosh R2X = ~R2 ke -hk
&-- (x2+h2)2

sin kx C&
y.o o

Substituting this result and (6) in condition (2’) yields

J’[(
m

) b+(-k2c-’m’f5Dsinbk2A + ~kC + $ B COS
o )]

J’
m

@ ~2 ke-m. _—
c sin kx &

o

This relation gives the following two equations:

>
kA ‘B.o-p!c——

C2

‘1). ~R2epA+kC-— -hk

C2 1

Employing condition (l’) gives

M J’
m

‘% - 2cR2x(H-h)
~

y.-H = [x2+(H-@2]2 = - CR2 o ‘<(H-h)k ‘in h *

[1 J’
m

a@
~ Y=-H = ~;%:]2 ‘ + CR2 () ‘e-(H+h)k ‘in h a

(7)

. . ,,-...... . .... . .. . ,.,, ,,,. .. -—-—., —..- —
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Applying the results to condition (1’) yields

J’[
m

1k(B cosh kH-A sinh kH) cos kx+k(D cosh kH-C sinh kH) sin kx dls
o

= 2cR2

J

kc-n sifi w Sin kX dk
o

from which

B cosh kH -AsinhkH=O

D cosh kH -C sirihkH=2cR2e
-Hk

sinh kh

or

B= AtanhkH
(8)

D=CtanhkH+2cR2e
.Hk sinh kh

cosh kH

These equations together with equations
unknown functions A, B, C, and D.

From equations (7) and (8) the two
found :

(7) permit determining the

equations for A and C are

(k )-5tm HA-’c=o

(pA+k

)

2g R2 .-&ttiHD=~ cosh k(H-h)
=2 cosh kH

Solving these equations determines A and C
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&R2 cosh k(H-h)

A= c
cosh IsH

“v
V2+(k - ~tanh kH)2

~2

~2+(k-&mhkH)2

Equations (8) then permit finding B and D. In this way the func-
tion Q is determined, which makes it possible to obtain the velocity
potential @. The complex potential of the absolute velocities must
be found:

w=~+i(p

First

()%=Reel-~

(-)CR2
02 = Reel ~

w

Q = Reel
J[ 1(A+Di) cos kz + (C-Bi) sin kz dk
o

where z=x+iy. Hence

m

w . 2cR2hi +
z2+h2 f[ 1

(A+Di) cos kz + (C-Bi) sin kz &
o

The complex potential W of the relative’velocities is obtained by
adding to the right side the term -CZ. In terms of this potential
the pressure of the stresm on the cylinder is obtained by the formula
of Chaplygin:

J( )

2

x -iY= $Ei ~ d-z

where the integral is taken over a contour containing the dipole
z=- ih.

l–
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10. COMPUTATION OF WAYE RESISTANCE

The problem of finding wave resistance is restricted only to the
computation of X, and therefore only to the imaginary part of the inte-
gral of the formula of Chaplygin:

J )
2

x= - ~L5 Imag.
dW ~z
z

(9)

The function W may be written

The function G(z)

G(z) = - CZ +

From formula (9) is

2
W=-~+ G(z)

is homomorphic about the point z= - hi:

J[

Zm
CR
—+

1
(A+Di) cos kz + (C-Bi) sin kz dk (lo)

z+hi
o

obtained

dw 2
—.
‘z (zl~i)2

+ G’(z)

from which

Jw’zt5G’(z) dz = 4fiicR2G’’(-ih)

Therefore

x=- 2fiR25c“Reel G“(-ih)

Making use of formula (10) the real part of the second derivative of
the function G(z) at z = - ih is determined:

‘ee+’’(-ih!=-&2@--B‘imh)&
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from which

x = 2#5c

J“

k2 (A
o

But, as was found in formulq (8),

s

@

X = 2fiR25c
o

Replacing A by its value gives

31

cosh kh - B sinh kh) dk

B= A tanh U. Hence

~2A cosh k(H-h) ~
cosh kH

x = At@#pJ cosh2 k(H-h) . k2dk

o cosh2 kH p?+ (k- &t@ M)2

C2

which is
sipative

the formula for the wave resistance in the presence of dis-
Rayleigh forces. Freed from these forces

sm

L = lim ~ . cosh2 k(H-h) . k2dk

p=o o cosh2 kH P2 + (k - &t*@2
C2

A new variable of integration ~ is introduced, setting kH = ~ and
with the following notations:

~-x

7-

h—=
Ha

m=v~

In this notation L is rewritten

1-
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If the number x is less thsm unity

then L = O and the wave resistance is equal to zero. When x > 1
the roots of the equation in g are considered:

P12+ (%-Xtafi~)2 .() (12)

This equation may be resolved into the two following equations:

Only the first of these equations will be considered. In view of the
fact that x > 1, the equation ~ = x tanh ~ has one real root which

is denoted by ~. Equation (11) has one real root ~, approaching ~

as PI approaches zero; ~. = :~1~. By applying these notations, the

left side of equation (12) is ekanded in a series about the point ~:

(13)

The integral (11) may be represented as the sum of a certain contour
integral taken along the path OIK~ and a residue multiplied Qy 2fii

of the function under the integral relative to the point ~ = ~:

.. .



NACATM 1335 33

The first component on the right side gives zero in the limit. From

series (13) the limit of the second component can likewise easily be
found . The following expression is finally found:

<02cosh2(l-a)g0
L =—.

;2 cosh2 go -~

For the expression for X,

41&R4 ~02 cosh2 (l-u)go
x=

~2 “ cosh2&) -x
(14)

is now obtained. This is the formula for the computation of the wave
resistance for velocities c less than the critical velocity -@.
The value ~ is the real root of the equation

tanh .&O (15)

From formula {14) is readily obtained the formula of Lanibfor the
wave resistance of a cylinder moving under the surface of a fluid of
infinite depth. When H is very large, the root go of equation (15)

is ~ =x, from which

Substituting this expression in formula (14), the formula of Lamb is

obtained:

Now formula (14) is investigated. In place of go is written ~. In

the second factor on the right side x is replacedhy </tanh ~ to

obtain

x= 83c2&3R4, ~2 tsnh ~ ● cosh2 (1-a)~
H2 sirih2<-2C

(16)

1’ ..—.— —-. , —— . .———— .-—--
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The parameter
to infinity.
formula has a

I?ACATM 1335

x varied from 1 to co so that ~ will vary from zero
For ~ = O the second factor on the right side of this
value equal to 3/4. It will be shown that this vslue is—

a minimum or msximum. Denoting by A the investigated factor gives

A=~.#sifi2~
[ 1
cosh (1-a)~ 2

2 siti2~-2~” cosh ~

Then

from which

which shows that

.

Thus for ~= O the wave resistawe
bea minimumif a<l - Wi fo’
resistance is a maximum.

=0

1a(2-a)

will be an extreme vslue. It will
lsrger values of a the wave

For ~ = = the factor A becomes zero. This investigation
explains the genersl features of the dependence of the wave resistance
on the velocity.
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The parameter x varied from 1 to _ so that ~ will vary from zero
to infinity. For ~ = O the second factor on the right side of this
formula has a value equal to 3/4. It will be shown that this value is
a minimum or maximum. Denoting by A the investigated factor gives

A.lo~2Sifi2~
[ 1
cosh (l-a)& 2

2 sinh2~-2~” cosh ~

Then

L.E2 sinh 2< 3

(

7 2+

)
2 sinh’2g-2g=Z1+R~ ““”

[ 1
Cosh(1-a)~2=1-@4~2+. . .

cosh ~

from which

[{
A=$l+& ) 1a(2-a) ~2 + . . .

which shows that

Thus for ~= O the wave resistance
bea minimumif u<l- ~j ‘or
resistance is a maximum.

1a(2-a)

will be an extreme value. It will
lager values of a the wave

For E=rn the factor A becomes zero. This investigation
explains the general features of the dependence of the wave resistance
on the velocity.
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11. CONCLUSIONS

Formula (16) obtained in section 10 for the wave resistance of a
cylinder of radius R moving under the surface of a fluid of finite
depth H led to the following conclusions with regard to the change in
the wave resistance with velocity of motion and with depth h of its
submersion:

The magnitude

x: 81t2t5gR4
132

was computed for a series of values of a = h/H:

131
a=PR’z’l- J

~; 0.3; 0.36; 0.4; 0.5; :; :; ~; $

for the Froude number f = c/~@ varying between zero and 1. The
results of the numerical computations are given in figure 1.

The curves of this diagram show a considerable wave resistance
for small depths of submersion of the cylinder. With increased sub-
mersion of the cylinder the wave resistance drops sharply for most of
the values of the Froude number,

For the value of the parameter u = 1 - ~) the ch~acter of
the msximum or minimum changes at the point f . 1. For values of

m<l-~~ thecmves of thewave resistance have asharplyformeii
maximum. With a increasing from zero to 1 - J- thisms’ximum
decreases. The presence of this maximum shows up also on the curves
corresponding to values of u somewhat less than the number I -
the curves of wave resistance for u between 1 - ~~- and 0.3-;
(approximately) have two peaks, one at the point f = 1 and the other
near the point f = 0.55. For vslues of ~ > ().3 the wave resist~ce

increases monotonically with increasing velocity; the rate of increase
of the wave resistance is considerable for Froude numbers f nesr the
critical number f = 1.

In regard to the problem of the first psrt of the paper (sections 2
to 8), the results may be described as follows: When the motion of a
circular cylinder under the surface of a fluid is studied, the cylinder
may be replaced by a vortex if the ratio of the radius of the cylinder
to the depth of submersion of its center is less than 1/3 (see table).
In the composition of the flow and the lift force the principal part is
played by the circulation of the velocity about the cylinder. However,
by considering the general solution of the problem the terms obtained
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by Lamb and Havelock in their work are found. The effect of these
terms is appreciable only for small depths of submersion of the
cylinder; for lsrger depths the circulation of the stream velocity
plays the fundamental part.

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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